17 research outputs found

    Early Mechanical Alterations in Phospholamban Mutation Carriers: Identifying Subclinical Disease Before Onset of Symptoms

    Get PDF
    OBJECTIVES: This study aimed to explore echocardiographic characteristics of phospholamban (PLN) p.Arg14del mutation carriers to investigate whether structural and/or functional abnormalities could be identified before onset of symptoms. BACKGROUND: Carriers of the genetic PLN p.Arg14del mutation may develop arrhythmogenic and/or dilated cardiomyopathy. Overt disease is preceded by a pre-symptomatic phase of variable length in which disease expression seems to be absent. METHODS: PLN p.Arg14del mutation carriers with an available echocardiogram were included. Mutation carriers were classified as pre-symptomatic if they had no history of ventricular arrhythmias (VAs), a premature ventricular complex count of <500/24 h, and a left ventricular (LV) ejection fraction of ≥45%. In addition, we included 70 control subjects with similar age and sex distribution as the pre-symptomatic mutation carriers. Comprehensive echocardiographic analysis (including deformation imaging) was performed. RESULTS: The final study population consisted of 281 PLN p.Arg14del mutation carriers, 139 of whom were classified as pre-symptomatic. In comparison to control subjects, pre-symptomatic mutation carriers had lower global longitudinal strain and higher LV mechanical dispersion (both p < 0.001). In addition, post-systolic shortening (PSS) in the LV apex was observed in 43 pre-symptomatic mutation carriers (31%) and in none of the control subjects. During a median follow-up of 3.2 years (interquartile range: 2.1 to 5.6 years) in 104 pre-symptomatic mutation carriers, nonsustained VA occurred in 13 (13%). Presence of apical PSS was the strongest echocardiographic predictor of VA (multivariable hazards ratio: 5.11; 95% confidence interval [CI]: 1.37 to 19.08; p = 0.015), which resulted in a negative predictive value of 96% (95% CI: 89% to 98%) and a positive predictive value of 29% (95% CI: 21% to 40%). CONCLUSIONS: Global and regional LV mechanical alterations in PLN p.Arg14del mutation carriers precede arrhythmic symptoms and overt structural disease. Pre-symptomatic mutation carriers with normal deformation patterns in the apex are at low risk of developing VA within 3 years, whereas mutation carriers with apical PSS appear to be at higher risk

    P62-positive aggregates are homogenously distributed in the myocardium and associated with the type of mutation in genetic cardiomyopathy

    Get PDF
    © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd Genetic cardiomyopathy is caused by mutations in various genes. The accumulation of potentially proteotoxic mutant protein aggregates due to insufficient autophagy is a possible mechanism of disease development. The objective of this study was to investigate the distribution in the myocardium of such aggregates in relation to specific pathogenic genetic mutations in cardiomyopathy hearts. Hearts from 32 genetic cardiomyopathy patients, 4 non-genetic cardiomyopathy patients and 5 controls were studied. Microscopic slices from an entire midventricular heart slice were stained for p62 (sequestosome-1, marker for aggregated proteins destined for autophagy). The percentage of cardiomyocytes with p62 accumulation was higher in cardiomyopathy hearts (median 3.3%) than in healthy controls (0.3%; P <.0001). p62 accumulation was highest in the desmin (15.6%) and phospholamban (7.2%) groups. P62 accumulation was homogeneously distributed in the myocardium. Fibrosis was not associated with p62 accumulation in subgroup analysis of phospholamban hearts. In conclusion, accumulation of p62-positive protein aggregates is homogeneously distributed in the myocardium independently of fibrosis distribution and associated with desmin and phospholamban cardiomyopathy. Proteotoxic protein accumulation is a diffuse process in the myocardium while a more localized second hit, such as local strain during exercise, might determine whether this leads to regional myocyte decay

    Distinct molecular signature of phospholamban p.Arg14del arrhythmogenic cardiomyopathy.

    Get PDF
    Phospholamban (PLN) p.Arg14del cardiomyopathy is characterized by a distinct arrhythmogenic biventricular phenotype that can be predominantly left ventricular, right ventricular, or both. Our aim was to further elucidate distinct features of this cardiomyopathy with respect to the distribution of desmosomal proteins observed by immunofluorescence (IF) in comparison to desmosomal arrhythmogenic cardiomyopathy and co-existent genetic variants. We studied eight explanted heart specimens from PLN p.Arg14del mutation carriers. Macro- and microscopic examination revealed biventricular presence of fibrofatty replacement and interstitial fibrosis. Five out of 8 (63%) patients met consensus criteria for both arrhythmogenic right ventricular cardiomyopathy (ARVC) and dilated cardiomyopathy (DCM). In four cases, targeted next-generation sequencing revealed one additional pathogenic variant and six variants of unknown significance. IF showed diminished junction plakoglobin signal intensity at the intercalated disks in 4 (67%) out of 6 cases fulfilling ARVC criteria but normal intensity in both cases fulfilling only DCM criteria. Notably, the four cases with diminished junction plakoglobin were also those where an additional gene variant was detected. IF for two proteins recently investigated in desmosomal arrhythmogenic cardiomyopathy (ACM), synapse-associated protein 97 and glycogen synthase kinase-3 beta, showed a distinct distributional pattern in comparison to desmosomal ACM. In 7 (88%) out of 8 cases we observed both a strong synapse-associated protein 97 signal at the sarcomeres and no glycogen synthase kinase-3 beta translocation to the intercalated discs. Phospholamban p.Arg14del cardiomyopathy is characterized by a distinct molecular signature compared to desmosomal ACM, specifically a different desmosomal protein distribution. This study substantiates the idea that additional genetic variants play a role in the phenotypical heterogeneity

    Phospholamban immunostaining is a highly sensitive and specific method for diagnosing phospholamban p.Arg14del cardiomyopathy

    Get PDF
    Phospholamban (PLN) p.Arg14del cardiomyopathy is associated with an increased risk of malignant ventricular arrhythmias and severe heart failure and a poor prognosis from late adolescence. It can be diagnosed in whole heart specimens, but rarely in right ventricular biopsy specimens, by PLN immunohistochemistry showing PLN-containing aggregates concentrated in cardiomyocytes in dense perinuclear aggresomes. The purpose of this study was to determine whether PLN immunohistochemistry can be used to diagnose PLN p.Arg14del cardiomyopathy using apical left ventricular myocardial specimens harvested during left ventricular assist device (LVAD) implantation. At that stage, a genetic diagnosis, which may guide treatment and referral of family members for further investigation, is frequently not established yet. Included were myocardial specimens from 30 diverse genetic cardiomyopathy cases with known variants (9 carriers of the pathogenic PLN p.Arg14del variant, 18 cases with other pathogenic or likely pathogenic variants in cardiomyopathy-related genes, and 3 with only variants of unknown significance). Immunohistochemical analysis revealed typical dense perinuclear globular PLN-positive aggregates, representing aggresomes, in all nine PLN p.Arg14del cases. In 20 non-PLN cases, PLN-staining was absent. In one non-PLN case, one of the two independent observers misinterpreted PLN staining of heavily wrinkled nuclear membranes of cardiomyocytes as perinuclear PLN aggregates. In this genetic cardiomyopathy cohort, PLN Immunohistochemical analysis in LVAD biopsies was found to be a highly sensitive (100%) and specific (95%) method for demonstration of PLN protein aggregates in PLN p.Arg14del cardiomyopathy. In clinical practice, PLN immunohistochemical analysis of LVAD specimens can be of incremental value in the diagnostic workup of this cardiomyopathy, even more so if genetic analysis is not readily available

    Rationale and design of the PHOspholamban RElated CArdiomyopathy intervention STudy (i-PHORECAST)

    Get PDF
    Background: The p.Arg14del (c.40_42delAGA) phospholamban (PLN) pathogenic variant is a founder mutation that causes dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM). Carriers are at increased risk of malignant ventricular arrhythmias and heart failure, which has been ascribed to cardiac fibrosis. Importantly, cardiac fibrosis appears to be an early feature of the disease, occurring in many presymptomatic carriers before the onset of overt disease. As with most monogenic cardiomyopathies, no evidence-based treatment is available for presymptomatic carriers. Aims: The PHOspholamban RElated CArdiomyopathy intervention STudy (iPHORECAST) is designed to demonstrate that pre-emptive treatment of presymptomatic PLN p.Arg14del carriers using eplerenone, a mineralocorticoid receptor antagonist with established antifibrotic effects, can reduce disease progression and postpone the onset of overt disease. Methods: iPHORECAST has a multicentre, prospective, randomised, open-label, blinded endpoint (PROBE) design. Presymptomatic PLN p.Arg14del carriers are randomised to receive either 50 mg eplerenone once daily or no treatment. The primary endpoint of the study is a multiparametric assessment of disease progression including cardiac magnetic resonance parameters (left and right ventricular volumes, systolic function and fibrosis), electrocardiographic parameters (QRS voltage, ventricular ectopy), signs and/or symptoms related to DCM and ACM, and cardiovascular death. The follow-up duration is set at 3 years. Baseline results: A total of 84 presymptomatic PLN p.Arg14del carriers (n = 42 per group) were included. By design, at baseline, all participants were in New York Heart Association (NHYA) class I and had a left ventricular ejection fraction > 45% and < 2500 ventricular premature contractions during 24-hour Holter monitoring. There were no statistically significant differences between the two groups in any of the baseline characteristics. The study is currently well underway, with the last participants expected to finish in 2021. Conclusion: iPHORECAST is a multicentre, prospective randomised controlled trial designed to address whether pre-emptive treatment of PLN p.Arg14del carriers with eplerenone can prevent or delay the onset of cardiomyopathy. iPHORECAST has been registered in the clinicaltrials.gov-register (number: NCT01857856)

    High resolution systematic digital histological quantification of cardiac fibrosis and adipose tissue in phospholamban mutation associated cardiomyopathy

    Get PDF
    Myocardial fibrosis can lead to heart failure and act as a substrate for cardiac arrhythmias. In dilated cardiomyopathy diffuse interstitial reactive fibrosis can be observed, whereas arrhythmogenic cardiomyopathy is characterized by fibrofatty replacement in predominantly the right ventricle. The p.Arg14del mutation in the phospholamban (PLN) gene has been associated with dilated cardiomyopathy and recently also with arrhythmogenic cardiomyopathy. Aim of the present study is to determine the exact pattern of fibrosis and fatty replacement in PLN p.Arg14del mutation positive patients, with a novel method for high resolution systematic digital histological quantification of fibrosis and fatty tissue in cardiac tissue. Transversal mid-ventricular slices (n = 8) from whole hearts were collected from patients with the PLN p.Arg14del mutation (age 48±16 years; 4 (50%) male). An in-house developed open source MATLAB script was used for digital analysis of Masson's trichrome stained slides (http://sourceforge.net/projects/fibroquant/). Slides were divided into trabecular, inner and outer compact myocardium. Per region the percentage of connective tissue, cardiomyocytes and fatty tissue was quantified. In PLN p.Arg14del mutation associated cardiomyopathy, myocardial fibrosis is predominantly present in the left posterolateral wall and to a lesser extent in the right ventricular wall, whereas fatty changes are more pronounced in the right ventricular wall. No difference in distribution pattern of fibrosis and adipocytes was observed between patients with a clinical predominantly dilated and arrhythmogenic cardiomyopathy phenotype. In the future, this novel method for quantifying fibrosis and fatty tissue can be used to assess cardiac fibrosis and fatty tissue in animal models and a broad range of human cardiomyopathies
    corecore